NEC SpectraView Reference 21 (LCD2180WG LED) - NEC SpectraView Reference 21



There are other advantages of using LEDs rather than CCFLs. They are mercury free and don’t use toxic gases making them more eco-friendly; there’s no need for a high voltage inverter; they’re more robust and are not housed in delicate glass; plus they’re not subject to sudden failure or burn out. That said, they can progressively fade over time, but I’ve read quotes of 11 years worth of use if these LEDS are used for 12 hours a day, 365 days a year, resulting in only a 30 per cent degradation in luminance. Not bad.

So what does all this mean to you and me? Or more appropriately considering the near £3,000 price, what does this mean for its intended pro users? Well this sort of backlight lends itself to a colour gamut that covers more than 100 per cent of both the Adobe RGB and NTSC colour spaces – something that DTP and photographic studios, etc will find very appealing considering that they want a wide and standardised colour space that ensures consistent colour reproduction across all the devices in their workflow.

As a digital photographer myself I can appreciate this and was understandably eager to get the Reference 21 up and running and see the results for myself. However, to do this properly takes a little time as the first task that should be done is to calibrate the monitor to your requirements. To help you do this NEC provides you with an updated version of the SpectraView Profiler software that I first saw with the NEC’s SpectraView 1980. As before this software works with a range of spectrophotometers and NEC kindly supplied a GretagMacbeth EyeOne Display sensor that worked with the Profiler software without a glitch.

There is a registration process to run through before it’s fully licensed, but on the whole this software is quite easy to use. Put briefly, the software in conjunction with the spectrophotometer allows you to set the colour temperature, luminance curve (or gamma 1.3 to 3.0) and the brightness. These are then calibrated in the monitor’s hardware followed by the generation of an ICC colour profile that should ultimately suit your particular workflow.

During the steps of the calibration process you can if you wish, adjust the white point of the active display profile in the software and balance the linearity of grey tones. You can also select a gamut compression option so that the colours produced from another device in your workflow (which may be out of range of the monitor), are then “compressed” into view. Another noteworthy point is the new option of calibrating the Reference 21 to the L* (LStar) target luminence curve. NEC recommends this because using a traditional gamma calibration (originally designed for CRTs) distorts the greyscale values in certain regions, by either expanding or compressing them. In contrast, the L* calibration method produces results that appear linear to the human eye. You can read more about that over here, although much of it was in German at the time of writing.

As with other SpectraView monitors the spectrophotometer is hung in front of the display through an aperture cut into the magnetically attached felt-lined hood. When not in use the aperture can be covered with an integrated swivelling cover. The hood comes as part of the package but the spectrophotometer will have to be purchased separately. Also in the box is a certificate that comes with all SpectraView monitors. This is the product of a final inspection performed by NEC where the Reference 21 is set to the following typical pre-press settings: Brightness level 60 per cent; Colour temperature 5000K (Daylight 50); and Gamma Correction 1.8 (for the Mac OS). This is then followed by a full validation by comparing the colour differences to the CIE L*a*b* Colour Space Specification, expressed as a DeltaE value.